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ABSTRACT
Several researchers, present authors included, envision per-
sonal mobile robot agents that can assist humans in their
daily tasks. Despite many advances in robotics, such mobile
robot agents still face many limitations in their perception,
cognition, and action capabilities. In this work, we propose
a symbiotic interaction between robot agents and humans
to overcome the robot limitations while allowing robots to
also help humans. We introduce a visitor’s companion robot
agent, as a natural task for such symbiotic interaction. The
visitor lacks knowledge of the environment but can easily
open a door or read a door label, while the mobile robot with
no arms cannot open a door and may be confused about its
exact location, but can plan paths well through the building
and can provide useful relevant information to the visitor.
We present this visitor companion task in detail with an
enumeration and formalization of the actions of the robot
agent in its interaction with the human. We briefly describe
the wifi-based robot localization algorithm and show results
of the different levels of human help to the robot during
its navigation. We then test the value of robot help to the
visitor during the task to understand the relationship trade-
offs. Our work has been fully implemented in a mobile robot
agent, CoBot, which has successfully navigated for several
hours and continues to navigate in our indoor environment.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Experimentation

Keywords
Human-robot/agent interaction

1. INTRODUCTION
Robotic technology has had many advances, but mobile

robot agents are still not universally present in our daily en-
vironments (e.g., robots in our offices [2][10] or malls [11]).
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While the ultimate goal is for robots to perform tasks au-
tonomously, we realize that robots still have many limita-
tions, at the perception, cognition, and execution levels. In-
terestingly, many of the limitations may not be limitations
for humans who may coexist with robots in the environ-
ment. We investigate methods for robots to overcome their
limitations by asking humans for help while also helping hu-
mans along other dimensions. We hence define a symbiotic
relationship as one in which the robot performs tasks for hu-
mans and the humans in return help the robot agents. This
relationship is in contrast to those in which the human or
the robot is responsible for helping the other without benefit
in return (e.g., social learning [2] collaborative control [5][7],
sliding autonomy [9]).

We introduce a visitor’s companion robot agent as a natu-
ral task for such symbiotic interaction. In this task, a robot
autonomously navigates in the building, accompanying a vis-
itor through a schedule of meetings and satisfies other needs
of the visitor (e.g., [13][15][16]). In the visitor companion
task, the visitor could lack knowledge of the good paths in
the building, of specific locations or people. The limitations
of a robot (without manipulation capabilities) include occa-
sional confusion about its localization, and ability to open
a door or get a cup of coffee. Robot and humans could
help each other to overcome each others’ limitations to mu-
tually benefit in satisfying the goals of the task. We have
developed a fully operational visitor companion robot agent,
CoBot, which continues to successfully navigate in our in-
door environment.

In this paper, we formalize the symbiotic relationship,
which can be viewed as an asynchronous team coordina-
tion between the human and the robot. We introduce the
state and actions of the robot in order to capture the symbi-
otic interaction with the human. We identify different types
of equivalent robot actions, including physical execution and
information actions. Each of the physical actions has a prob-
ability function of success or failure, where failure triggers
an action to ask for help from the human rather than a fail-
ure to complete the task. We briefly describe the wifi-based
robot localization and navigation algorithm and show how
different amounts of human help for localization affect the
robot’s navigation. We then test the symbiotic relationship
with real visitors to understand the tradeoffs between the
value of robot help and and the costs of the robot’s ques-
tions.

The paper is organized as follows. Section 2 defines the
symbiotic relationship with respect to related work in human-
robot relationships. Section 3 formalizes the Visitor-Companion

915

915-922



Task as an example of a symbiotic relationship in which a
robot agent is benefits from human knowledge as it accom-
panies and helps the human. Section 4 presents the human
help to the robot, while Section 5 analyzes the robot help to
the human.

2. SYMBIOTIC RELATIONSHIPS
We are interested in robots that can overcome their limi-

tations by asking humans for help. While many other robots
achieve their goals with human assistance, we differentiate
symbiotic relationships in several ways.

In symbiotic relationships, the agents in the team are per-
forming separate asynchronous actions and the results affect
all team members involved. Unlike sliding autonomy or col-
laborative control systems (e.g., [5][7][9]) in which the robot
can seek assistance or confirmation from humans, symbiotic
agents are autonomous and do not control or direct each
others’ actions in any way. All agents can take these actions
to achieve the goals of the team, and coordinate through
synchronous communication actions to request and provide
help to team members.

The agents in symbiotic relationships benefit each other
by requesting and receiving help on actions they could not
have performed alone due to lack of capabilities, coordinating
their actions only when they need help. The help can come
in two forms:

• an agent performs an action for another (e.g., socially
embedded learning [2] in which the human escorts the
robot to the desired location)

• an agent increases another’s capability to complete the
action (e.g., learning by demonstration [1] in which a
human tells the robot which state they are in or which
action to take)

While the robot could learn to perform tasks it requests help
for, we do not expect any robot to be able to complete all
actions. For example, a robot without arms cannot ever lift
a cup of coffee.

Finally, because there may be many possible plans that
achieve the same goals, the agents assign costs to their state
(expectations) which all the agents can use when evaluating
the best actions. When the agents take actions that affect
each other, they take actions to minimize cost of each others’
state while achieving the goal, further benefitting the group.
This relationship is in contrast to those in which the human
or the robot is responsible for helping the other without
benefit in return.

3. VISITOR COMPANION TASK
To illustrate the symbiotic relationship, we contribute a

formal definition of states (Table 1) and actions (Table 2)
from the robot’s perspective in the Visitor-Companion Task.
The Task requires the robot to accompany a visitor to each
meeting throughout the day. Additionally, it could complete
other tasks for the human like getting coffee. Although both
the robot and human have the same goals, they are not
performing the actions together. When possible, the robot
acts autonomously and performs actions to satisfy both the
visitor’s and its own goals (e.g., the robot navigates to the
meeting and the visitor follows without negotiation).

However, the robot may have limitations, either due to
state uncertainty or lack of capabilities which may cause

some of its actions to fail. Because the companion problem
requires that a human be present near the robot for a major-
ity of the time, it offers the flexibility of the robot proactively
requesting assistance from the visitor or other humans when
needed. The visitor can answer questions (e.g., tell the cur-
rent location) or physically help the robot (e.g., lift a cof-
fee cup). The visitors actions satisfy the robots’ subgoals
which in turn satisfy the shared goals of both the human
and robot. The help mutually benefits the robot, which can
now complete the task, and the human when the request is
accomplished or expectation is satisfied.

This formalism is written in the PDDL planning language
[8] with extensions1.

3.1 States and Actions
While the robot maintains state mostly about itself and

the actions it has performed, it also maintains some state
about the visitor in order to evaluate the visitor’s expec-
tations when deciding on its actions. We divide the ac-
tions into categories - asynchronous (in italics: Execute,
Inform, Ask, Request) and synchronous (Respond, Process-
Response, Process-Request, Notify). While the asynchronous
actions can happen whenever the preconditions are met, the
synchronous actions require another communication action
(Table 3) be performed before they can be invoked and af-
fect the state of the visitor. Both humans and the robot
can perform both asynchronous and synchronous actions,
asking/requesting and offering help to benefit each other.

Asynchronously, the robot can inform visitor about differ-
ent locations such as labs that might be of particular inter-
est. These interesting locations are initialized at the start
of a visitor’s day with the still-interesting state. When
the robot is at a location that it knows about it can inform
the visitor:
(:action inform-loc

:parameters (?loc)

:precondition (and (known-loc ?loc)

(still-interesting location ?loc)

(robot-at-loc ?loc))

:effect (and (visitor-informed location ?loc)

(not (still-interesting location ?loc)))

)

The robot can move past these different locations around
the building using the nav-target state to maintain knowl-
edge of where it is going. This autonomous action as well
as open-door and put-coffee include a capability or proba-
bility of success based on the robot’s uncertainty (discussed
later), which can result in either a success or failure:
(:action move

:parameters (?loc)

:precondition (nav-target ?loc)

:effect (prob-or (and (success move ?loc)

(robot-at-loc ?loc))

(failed move whereAmI))

)

Based on the failure (e.g., localization error from move),
the robot can ask a human nearby for help:

1The extension that we propose is the “prob-or” operator
in listing the effect of an action. When an action :action
a1 has effect :effect (prob-or e1 e2), it indicates that
the effect of the action is either e1 or e2 with probabilities
unknown a-priori. The action a1 has to internally decide on
the effect.
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Agent State Predicate Description
Robot (robot-at-loc ?loc) the robot’s current location is ?loc

(known-loc ?loc) the robot knows about location ?loc
(still-interesting ?type ?info) the visitor does not know about info (type = who, where, when, location)
(schedule ?loc1 ?loc2) the visitor’s schedule includes the transition from ?loc1 to ?loc2
(nav-target ?loc) the robot’s current navigation target location
(success ?action) the robot successfully completed ?action (move, open-door, put-coffee)
(failed ?action ?why) failed ?action for reason ?why (whereAmI, openDoors, or getCoffee)
(next-to-robot ?human) a human is next to the robot
(asked ?human ?ques) asked a human for ?ques (?ques = whereAmI, openDoors, or getCoffee)
(h-responded ?human ?ques ?ans human responded to question with answer
(visitor-requested-info ?type) visitor requested info about the next meeting or location
(visitor-requested-act ?act) visitor requested the coffee or an email (act = reqCoffee or emailLate)
(notify-completed ?act) robot notified the visitor that it completed the request

Visitor (visited-loc ?loc) the visitor’s visited ?loc for a meeting
(late ?loc) the visitor was late to meeting at ?loc
(visitor-informed ?type ?info) the visitor was informed about info
(req-satisfied ?act) the visitor’s request was satisfied

Table 1: The Visitor-Companion Robot’s state predicates and the predicates it holds for the visitor’s state.

Action Type Actor (→ Actee) Action(Parameters) Description
Execute robot nextMeeting(?loc) robot determines next meeting loc given the current loc

move(?loc) robot moves from current location to ?loc
open-door robot opens the door in front of it
put-coffee robot picks up coffee (to bring somewhere else)

Inform robot → visitor inform-loc(?loc) robot informs visitor about current location
inform-meeting(?type ?info) robot informs visitor about meeting info

Ask robot → human ask(?ques) robot asks human whereAmI, openDoors, or getCoffee
Respond human → robot respond(?ques) visitor responds to the robot

Process-Response robot process-loc(?ans) robot processes visitor’s loc answer
process-action(?ques ?ans) robot processes visitor’s action (door open, put coffee)

Request visitor → robot request-info(?type) visitor requests info about next meeting or current loc.
request-act(?act) visitor requests the robot take an action

Process-Request robot proc-req-info(?type) processes request for information about meeting host
proc-req-act(?act) robot processes request for action

Notify robot → visitor notify-IAmThere(?loc) robot notifies visitor they have arrived at ?loc
notify-done(?act) notifies visitor that it completed the requested action

Table 2: Visitor-Companion Robot and Visitor’s actions. Action types in italics are actions the agents
perform asynchronously. The visitor both requests help and responds to the robot’s questions (in bold).

(:action ask

:parameters (?ques)

:precondition (and (failed ?action ?ques)

(next-to-robot ?human))

:effect (asked ?human ?ques)

)

When the visitor responds to a location question, the
robot processes the response and updates its location in-
formation to continue moving:
(:action process-loc

:parameters (?ques ?ans)

:precondition (and (asked ?human whereAmI)

(h-responded ?human whereAmI ?ans)

(robot-at-loc ?loc))

:effect (and (not (asked ?human location))

(not (h-responded ?human whereAmI ?ans))

(not (robot-at-loc ?loc))

(not (failed move whereAmI))

(robot-at-loc ?ans))

)

Otherwise, the robot waits for the action to be taken,
updates its state, and continues with its plan. Finally, when
the robot arrives at meeting location with the visitor, it
notifies him that he has arrived:
(:action notify-IAmThere

:parameters (?loc)

:precondition (and (success move)

(next-to-robot visitor)

(robot-at-loc ?loc))

:effect (and (not (success move))

(visited-loc ?loc))

)

3.2 Capabilities
Unlike socially embedded learning [2] in which the robot’s

task is only to ask questions while learning, we expect the
agents to perform tasks autonomously when possible. The
robot should ask for help only when it lacks the ability to
perform some action. In order to model these limitations,
some actions have both success and failure effects that hap-
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Communication Type Action Effect Description
Speak ask asked human is asked

proc-req-info visitor-informed visitor is informed of meeting information they requested
informed-loc visitor-informed visitor is informed of the location
informed-meeting visitor-informed visitor is informed of meeting information
notify-IAmThere visited-loc the visitor’s location is updated when notified of arrival
notify-done(getCoffee) req-satisfied the visitor knows their request has been satisfied

Email proc-req-act(emailLate) req-satisfied the meeting host is emailed the visitor is late

Table 3: Visitor-Companion Robot’s communication

pen according to capabilities - the probability of success p.
If there is no chance of completing an action, p = 0. For
example, if the robot does not have arms, there is no change
it could perform open-door or put-coffee itself. These ac-
tions will always result in failure and the robot will always
request help from a human near the coffee maker with action
(ask giveCoffee). When p > 0, the robot may not com-
plete an action successfully due to the uncertainty in the
robot models. For example, in the move action, the robot
may be uncertain of its location which contributes its suc-
cessful completion.

3.3 Expectations
While the robot only requires state and actions in order

to complete a task, there may be many plans that equally
satisfy the constraints. In order to find the ”best” plan or
determine when it is best to take an action, we define expec-
tations that an agent may have on their state. Formally, we
define an expectation as a pair 〈s, c〉 where s =(and (pred-
i)) the combination of state predicates and c is the cost of
s being satisfied. The cost is incurred each time the state
is satisfied. For example, the visitor may not want to be
late to any meeting. In this case, we model this with the
expectation that the visitor has not requested the robot to
email a meeting host about his lateness:

〈(and (visitor-requested-act emailLate)

(late loc)),clate〉
The visitor expects a drink shortly after requesting it:

〈(and (visitor-requested-act drink)

(not (req-satisfied drink))), cdrink〉
Additionally, the visitor might assign a cost each time he

is asked and responds to question:

〈(and (h-responded visitor ?ques)

(asked visitor ?ques)), cask〉
If these state predicates are ever true, the team members

incur a cost of c. Using these expectations, the robot can
choose the best plan, the best action, or the best time to
take an action that minimizes the cost to the visitor. While
the robot may not always be able to avoid asking for help,
for example, it can ask raise the threshold of how uncertain
it is to avoid asking questions if it may be able to perform
the action itself.

We have enumerated states and actions for a Visitor -
Companion robot to create a symbiotic relationship with
a human. The robot performs tasks for the visitor, help-
ing him move between his meetings and satisfying other re-
quests like getting coffee. In cases when the robot finds it

has limited capabilities, the visitor offers to help the robot
with the expectation that the robot completes the plan to
his satisfaction with a minimal cost. Next, we present our
real robot, CoBot, which performs the Visitor-Companion
Task and results when the it asks for localization help from
the visitor without any expectations. Then, we analyze the
usability of the robot based on the costs of asking for help
and the value of the robot’s actions.

4. HUMAN HELP TO THE ROBOT
The Visitor-Companion Task best illustrates the symbi-

otic relationship between humans and robots when the robot
lacks some capabilities for which it can ask the visitor for
help. We have implemented this task on our robot, CoBot, a
custom built mobile robot (Figure 1) capable of autonomous
navigation under localization uncertainty. However, CoBot
does not have arms and therefore cannot open doors or pick
up coffee. Additionally, CoBot represents its location under
uncertainty so CoBot’s capability to uneventfully move be-
tween locations changes with time. Thus, the move action
has the probabilistic effect of either success or failure.

The capability probability for the robot to complete action
a, pa, could be used in many different ways to determine
when to ask, including as a learned threshold (e.g., [6]) or
along with time constraints (e.g., [12]). CoBot decides to
seek help by thresholding the capability:

if p < threshold, ask

As CoBot is incapable (p = 0) of open-door and put-coffee,
any threshold > 0 will require to appropriately ask for help.
For any action, like move, where 0 < p < 1, the threshold is
action- and state-dependent and hence can either have the
effect of autonomous execution or ask the human for assis-
tance, as was captured by the prob-or conjunction in the
description of the move action in Section 3.1. We illustrate

Figure 1: The CoBot Visitor-Companion Robot.
Thanks to Mike Licitra, who designed and built it.
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CoBot’s requests for assistance with localizing itself based
on its capability to navigate under uncertainty.

4.1 Determining When to Ask
CoBot uses a WiFi localization algorithm to localize it-

self for the purpose of navigation [3]. The location of the
robot is tracked using a particle filter with a set of particles
P. The inferred location of the robot lRobot is computed by
clustering the particles [4] and taking the weighted mean of
the best cluster P∗, P∗ ⊆ P. The destination location ld
and the graph map of the building are used to generate a
topological policy π over the map to be used by the robot
to navigate to ld. Using this topological policy π and the
inferred location lRobot of the robot, a Path is computed,
which is a list of navigation primitives n from set of naviga-
tion primitives N :

N = {MoveDownCorridor(distance),

InPlaceTurn(φ),

TakeNextTurn(direction)}
While the algorithm allows CoBot to autonomously nav-

igate, localization errors and environmental factors may af-
fect successful navigation over time. We quantify the local-
ization uncertainty by two measures:

• Deviation Uncertainty: the weighted standard devia-
tion of the best cluster of particles P∗:

D(P∗) > tunc

• Policy Uncertainty: the existence of a policy conflict
within the best cluster:

∃ρ1, ρ2 ∈ P
∗ : π(ρ1) �= π(ρ2)

When there is Deviation Uncertainty, the location of the
robot cannot be estimated accurately. When there is Pol-
icy Uncertainty, the location of the robot is not known with
enough certainty to unambiguously select a navigation prim-
itive to execute. CoBot’s capability to move successfully to
a goal location is determined by localization uncertainty,
pmove = 〈p1, p2〉, where :

p1 =

(
1 − D(P∗)

2tunc
, if D(P∗) ≤ tunc

0, if D(P∗) > tunc

p2 = max ni

h
‖Pni‖
‖P∗‖ : Pni = {ρj ∈ P∗ : π(ρj) = ni}

i
We have constructed p1 such that p < 0.5 iff D(P∗) >

tunc (it has Deviation Uncertainty). CoBot could ask when
p1 < threshold1 = 0.5. Similarly, when p2 < threshold2 = 1,
it has Policy Uncertainty. Because there are two parameters
which each contribute to pmove, we can define four rules for
determining when to ask (i.e., when p <threshold, ask)

• Ask-D-Only : p1 < threshold1, ask

• Ask-π-Only : p2 < threshold2, ask

• Ask-D-or-π : (p1 < threshold1) ∨ (p2 < threshold2), ask

• Ask-D-and-π : (p1 < threshold1) ∧ (p2 < threshold2), ask

Before performing each navigation primitive ni, CoBot as-
sesses its capability to move using one of the four methods
above. If it finds itself uncertain and unable to perform the
primitive, CoBot asks the visitor for help. Thus, the move

action can have the effect of success (and autonomous nav-
igation) or of failure (and asking the human for assistance).

4.2 Acting based on Capabilities
When CoBot is navigating autonomously (will not ask

a human for help) and detects these uncertainties, CoBot
performs a Replan algorithm:

1. If Deviation Uncertainty and not Policy Uncertainty:
then ∀ρ1, ρ2 ∈ P∗ : π(ρ1) = π(ρ2) = ni and CoBot
should execute ni with updated parameters

2. If Policy Uncertainty and not Deviation Uncertainty:
then the robot is likely at lRobot and CoBot should
execute primitive π(lRobot) with updated parameters

3. If Deviation Uncertainty and Policy Uncertainty:

(a) Stop and wait until enough WiFi signal strength
readings are collected that D(P∗) < tunc

(b) Recalculate the location of the robot lRobot

(c) Regenerate Path using lRobot, and continue

If only one of uncertainty is true, CoBot knows which action
to take and can continue navigating without stopping. It
only relocalizes and generates a new plan when uncertain in
both ways.

When, instead, CoBot can ask for help to determine its
location, it first uses one of the four functions above to de-
termine whether to ask for help and otherwise uses the ap-
propriate condition in the Replan algorithm to continue nav-
igating without stopping. Concretely, when CoBot asks the
visitor for help, the visitor clicks on the robot’s current loca-
tion on a map of the building, the most specific question it
could ask [14]. Given the visitor’s response coordinate pair
(x, y), CoBot reinitializes all particles ρi ∈ P with weights:

wi =
1

|P|
at locations around (x, y):

(x + N (0, σ), y + N (0, σ))

The Gaussian normal N (0, σ) is an additive term which ac-
counts for human error when indicating the robot’s location
on the map. When tunc > σ, the visitor’s response im-
mediately reduces CoBot’s Deviation Uncertainty. Because
the reinitialized particles have a smaller deviation, it is also
more likely to reduce the Policy Uncertainty.

4.3 Experimental Results
In order to understand the impact of asking questions

on CoBot’s uncertainty, we tested CoBot’s ability to navi-
gate through a twelve-meeting schedule. We varied when to
ask questions based on the four asking functions presented
above, and compared it against fully autonomous naviga-
tion. The schedule was contained on a single floor of our
building and measured 818 meters long (the mean over all
the runs, as calculated from the localization of the robot).
Fig. 2 shows the reconstructed path of the robot from one of
the runs, with photographs of some events during the run.
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Figure 2: Trace of the path traversed by the robot while following the schedule. Snapshots: a) CoBots
leads the visitor to her first meeting b) CoBot requests assistance with getting a cup of coffee c) The visitor
graciously accepts her cup of coffee d) CoBot navigates around other humans in the corridor while leading
the visitor to her last meeting

We report uncertainty in terms of D(P∗) in cm, although
Policy Uncertainty was also used to calculate when to ask.
We set tunc to 200cm for the decision algorithms that re-
quire it, and note that higher thresholds would result in
fewer questions and lower thresholds results in more frequent
questions. While the threshold would change the frequency
of questions, the proportion of questions between conditions
would be impacted uniformly.

4.4 Autonomy vs. Asking
While CoBot is capable of autonomous localization and

navigation in the environment, it can suffer from high un-
certainty. Table 4 shows the median D(P∗), navigation
time, and total number of replanning steps taken during
autonomous navigation and the four question-asking con-
ditions. On average, CoBot has 12cm more uncertainty
while navigating autonomously (80.77cm) compared to any
of the asking conditions (average 68.88cm). CoBot benefits
from the 12cm difference, as it is able to navigate door-
ways around people with more precision. Additionally, we
find that CoBot must run the replan algorithm 3349 times
when navigating autonomously compared to 1601 times us-
ing the Ask-D-and-π decision algorithm and only 38 times
using Ask-π-Only. Note that most of the replans were per-
formed while navigating - the robot did not have to stop.

CoBot spent 1666 seconds navigating autonomously, com-
pared to 1519 seconds on average when asking for help. The
147 second difference can be attributed to higher average un-

Condition Uncertainty (cm) Nav. Time # Replans
Autonomous 80.77 1666 3349
Ask-D-Only 64.67 1523 64
Ask-π-Only 71.89 1495 38
Ask-D-or-π 64.24 1511 61

Ask-D-and-π 74.72 1547 1601

Table 4: Median Uncertainty (measured with D(P∗)
in cm), Navigation time, and Number of Replanning
steps for each condition

certainty which resulted in more backtracking when CoBot
drove past meeting room locations or hallway intersections.
While asking for help requires time to stop and wait for a
response, it results in at least a 50% reduction in the replan
steps, and a 9% reduction in navigation time.

4.5 When to Ask
While CoBot benefits from asking for help in terms of nav-

igation and planning time, there are significant differences
between the asking functions. Table 5 shows the number
of requests for help, time spent stopping to wait for help,
and time between help requests for each condition. With
Ask-D-and-π, CoBot requests help 8 times, two-thirds fewer
questions than with the other asking functions. Over the en-
tire twelve-meeting schedule, the number of questions asked
averages to one question every 214 seconds for Ask-D-and-π,
compared to 32-68 seconds between questions in the other
conditions. CoBot was able to navigate to 33% of the meet-
ings completely autonomously in the Ask-D-or-π and asked
one question per meeting otherwise compared to more than
5 questions between each meeting for Ask-D-or-π.

Because CoBot asked few questions with Ask-D-and-π, it
spent only 64 seconds waiting for help, compared to 200 sec-
onds with Ask-D-Only and 496 seconds times with Ask-D-
or-π. Figure 3 shows the total amount of time CoBot spent
completing the meeting schedule, broken down by navigation
time, time to ask for help, and time to stop for replanning.
While the question-asking conditions spent about 1500 sec-
onds navigating, many took longer overall to complete the

Condition # Help Help Time (s) B/w Help (s)
Ask-D-Only 25 200 68
Ask-π-Only 38 304 49
Ask-D-or-π 62 496 32

Ask-D-and-π 8 64 214

Table 5: Number requests for help, Time spent
stopped for help (seconds), and Time between ques-
tions (seconds)
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Figure 3: Time taken for Stops, Asking and Navi-
gation for a) Autonomous b) Ask-π-Only c) Ask-D-
and-π d) Ask-D-or-π e) Ask-D-Only

schedule compared to autonomous navigation because they
spent a significant amount of time asking for help. In to-
tal, CoBot took 1692 seconds to complete the schedule au-
tonomously - stopping to replan for 26 seconds and navigat-
ing for the remainder of the time. CoBot took the longest
to complete the schedule using the Ask-D-or-π algorithm
(2015 seconds total), spending 1495 seconds to navigate and
an additional 498 seconds waiting for help. The Ask-D-and-
π algorithm resulted in the shortest completion time in 1653
seconds, 39 seconds shorter than autonomous navigation.

4.6 Where to Ask
Table 6 shows the number of questions each asking func-

tion asks by building location. Because the Ask-D-and-
π algorithm requires both measures of uncertainty to be
true before asking for help, CoBot asks few times compared
to the other asking algorithms and can take advantage of
mobile replanning. While other algorithms ask for help
in the hallways at least 10 times, the Ask-D-and-π algo-
rithm never does, because the policy in the hallway is al-
ways MoveDownCorridor and there is never a conflict.
Compared to the algorithms that ask whenever there is a
policy conflict, the Ask-D-and-π algorithm asks for help in
intersections and by meeting rooms at least 20 fewer times
because it often is certain of its location in these areas.

Overall, the Ask-D-and-π function asks the fewest ques-
tions and spends the least amount of time waiting for help,
resulting in the longest time between questions compared to
the other question-asking conditions. Although it has more
uncertainty on average than the other question-asking func-
tions, Ask-D-and-π has lower uncertainty than autonomous
navigation, spending less time navigating and cutting the
replans in half. The algorithm takes advantage of mobile
replanning to continue moving without requesting help.

Condition Halls Intersects Meetings Total
Ask-D-Only 16 (64%) 7 (28%) 2 (8%) 25
Ask-π-Only 10 (26%) 24 (63%) 4 (11%) 38
Ask-D-or-π 19 (31%) 35 (56%) 8 (13%) 62

Ask-D-and-π 0 (0%) 4 (50%) 4 (50%) 8

Table 6: Number of times CoBot asked for help in
each area of the building - hallways, intersections,
and meeting rooms.

5. ROBOT HELP TO THE HUMAN
We have shown that when CoBot makes decisions about

when to ask for based on its capabilities it can vary the
number of questions it asks and the time it takes to complete
the subgoal. However, we have not discussed the impacts of
the questions as well as the CoBot’s other abilities on the
visitor. Next, we present the results of five visitors using
our CoBot and show that most visitors would use the robot
again despite the requests for help.

5.1 Visitor Experiences
In order to test the CoBot’s capabilities in assisting vis-

itors through their meeting schedules, we invited five par-
ticipants to participate in a four-meeting schedule over the
same floor. The rooms were all constrained to a single floor
but were spread out in all four hallways. The participants
were true visitors and had never been in the building before.
Participants were told that the CoBot could assist them in
the following ways on the way to their meetings:

• bring drinks to meetings

• providing additional information about meeting hosts
(by displaying the host’s website)

They were told they should request the CoBot perform each
of these at least once in their schedule, but it was up to them
to choose when to make the requests. Because participants
could choose the order and time of each, it more accurately
reflects a typical day. They were told also CoBot will of-
fer information about different rooms and labs as they walk
between meetings. Additionally, they were told that some-
times the robot got lost and would ask for localization help.

All participants were able to follow the CoBot to their
meetings and answer the robot’s questions. CoBot success-
fully retrieved drinks and provided participants with infor-
mation about three labs they were passing and the meeting
hosts as the participants were guided to the meetings. While
participants typically would have had to search through the
hallways to find the rooms, CoBot led them directly there.

At the end of the meeting schedule, participants were
given surveys about their experiences and were asked to rate
each feature of the robot on a scale from -2 (not useful) to
2 (very useful). Table 7 shows the ratings each participant
(P1-5) gave for the robot’s abilities. We found that each par-
ticipant rated the usefulness of the meeting information dif-
ferently, showing that each participant had different expec-
tations for each ability and subsequent state. Additionally,
we asked each participant to rate the number of questions
CoBot asked from -2 (too many) to 2 (too few).

For each participant, CoBot gave the same information
and asked nearly the same number of questions. While par-
ticipants mostly felt the robot could have asked fewer ques-
tions, they had different opinions about how many were too
many - reflecting different costs associated with the ques-
tions. When we combine the robot’s abilities and the ques-
tions into a complete experience, we found that four out of
five participants said they benefitted from the navigation
guidance and other assistance and would use CoBot again,
even thought they felt the robot asked them for help too
many times. The one participant who would not use it again
placed high cost on asking for help and said he would use it
again if it asked fewer questions.

This finding necessitates modeling the expectations with
user-dependent costs for the visitor’s state. The robot can
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Ability P1 P2 P3 P4 P5
Host Info 2 0 2 1 2
Drink 2 -1 2 1 1
Labs 1 1 1 1 1
Help Requests -1 -1 -1 -2 0
Use it Again? Yes Yes Yes No Yes

Table 7: Participants ratings from -2 (not useful) to
2 (very useful) of CoBot’s abilities and questions.

use utility functions with the costs to determine which ac-
tions to take so that the visitor finds value in them.

6. CONCLUSION
In this work, we contribute a robot agent capable of being

in a symbiotic relationship with humans. We introduce the
Visitor-Companion Task as an example of a task where a
human visitor and a companion robot agent have joint goals
and coordinate as a team of human and robot, but interact
asynchronously. The robot can ask for help from the human
to overcome some of its limitations, including possible loca-
tion confusion, or need to open a door. The visitor is helped
by the robot in the navigation to meetings, and for occa-
sional needs, such as coffee. We presented a formalization
of the robot state and action spaces, where the effects of the
robot actions are probabilistic and can trigger invoking the
help of the human.

We presented our implementation of the task on our robot
CoBot and showed how CoBot could ask for localization
help. Our results show that asking for help can reduce lo-
calization uncertainty as well as the number of replanning
steps the robot must take compared to autonomous navi-
gation. As a result, the robot backtracked less and took
less time to navigate without asking many questions. We
showed that while CoBot performed the same tasks to help
each visitor, different visitors have different expectations for
the robot and reacted differently to the questions it asked.
Most of the visitors were satisfied with the human-robot re-
lationship and would use CoBot again. Our formalization
and our analysis enable our future work further experiment-
ing with human subjects.
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